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Ê Fast-Fourier Transforms within plane-wave codes

•Many Kohn-Sham density functional theory based ab initio
molecular dynamics (MD) codes use a Plane-Wave (PW)
Basis Set1–3

→ satisfy the periodic boundary conditions efficiently

•Wavefunctions are represented in reciprocal space as a
linear combination of PWs

ψn(r) =
1√
Ω

∑
G

cn(G)eiG·r

• PWs allow for quick and easy transition from real (R) space
to reciprocal (G) space and vice versa

• Essential in e.g. the application of the kinetic and potential
energy operators
→ reduces the overall scaling costs from N 2 to NlogN

•Modern MD simulation codes can spend up to 90% of the
runtime doing Fast-Fourier Transformations (FFTs)
→ highly efficient FFT routines required
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Occupation of the FFT grid:

•G space: only grid points within spheres 6= 0

• R space: all grid points 6= 0

Ì 3D FFT strategy

• 3D FFT is done by subdividing into 2D/1D FFTs
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Í Optimization strategies

• 1D FFT already highly optimized
→ we use the freely available FFTW3 library

• Instead, the focus lies on the organization of data
→ reordering/communication between 1D FFTs
→many 3D FFTs at the same time

• Improve the scaling to multiple nodes for all problem sizes
→ less MPI tasks; more OMP threads
→ able to choose dynamically depending on the problem

• Reduce communication bottlenecks
→ improve load balancing among all processors

Î Parallelization strategies

•Data within a sphere in G space is divided in sticks, sorted
and distributed among the MPI tasks:

reorder

distribute

• Efficient load balancing is achieved through the even
splitting of G vectors and sticks across MPI tasks

• Utilizing the 1D+1D+1D approach, the FFT proceeds as
follows:
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•Due to the change in shape from a sphere to a cube, the
parallelization strategy changes from sticks to planes during
the FFT procedure

Ï Why the need for further optimization?

XHighly optimized libraries already available (libFFTX)
XParallelization works across multiple cores and nodes

7 Parallelized with current processor/node structure in mind
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⇒ Increase of complexity in HPC architectures results in
new challenges for efficient FFT parallelization

Ð R space to G space algorithm

Algorithm of the decomposition of 3D FFT in 1D+1D+1D FFTs

(1) Reorder G vectors for FFT along z direction

(2) Perform 1D FFT along z direction

(3) Prepare data for communication across nodes

(4) Communication

(5) Reorder received data along y direction

(6) Perform 1D FFT along y direction

(7) Reorder data along x direction

(8) Perform 1D FFT along x direction

Ñ Implemented optimization and results

Single node optimizations

• Include OMP directives (e.g. vectorization)

• Remove unnecessary zeroing and allocations

• Refactor loop structures to be write-consecutive

• Introduce MPI shared memory
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Multi node optimizations

• Switch from ALL2ALL to Send/Receive

•Communicate batches of multiple states

•Overlap calculation and communication
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•We are currently implementing this optimized version of the
libFFTX into our already optimized CPMD code4,5

•Current results indicate a substantial increase in
performance in e.g. the calculation of v(r)Ψn(r) for most
core counts; in some cases of more than 100%
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