
Accelerating plane-wave-based ab initio molecular
dynamics by optimization of Fast-Fourier Transforms

for modern HPC architectures
Christian L. Ritterhoff1, Tobias Klöffel 1, Sagarmoy Mandal1, Bernd Meyer1

1Interdisciplinary Center for Molecular Materials (ICMM), Computer Chemistry Center (CCC),
Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany

Ê Fast-Fourier Transforms within plane-wave codes

•Many Kohn-Sham density functional theory based ab initio
molecular dynamics (MD) codes use a Plane-Wave (PW)
Basis Set1–3

→ satisfy the periodic boundary conditions efficiently

•Wavefunctions are represented in reciprocal space as a
linear combination of PWs

ψn(r) =
1√
Ω

∑
G

cn(G)eiG·r

• PWs allow for quick and easy transition from real (R) space
to reciprocal (G) space and vice versa

• Essential in e.g. the application of the kinetic and potential
energy operators
→ reduces the overall scaling costs from N 2 to NlogN

•Modern MD simulation codes can spend up to 90% of the
runtime doing Fast-Fourier Transformations (FFTs)
→ highly efficient FFT routines required

Ë Energy cutoff

In practice the sum is
truncated

1

2
|G|2 ≤ Ecut

Cutoff for wavefunctions:

•Gmax
cut ≤

√
2Ecut

Cutoff for the density ρ(r):

• Radius 2Gmax
cut

G
max
cut2G

max
cut

Occupation of the FFT grid:

•G space: only grid points within spheres 6= 0

• R space: all grid points 6= 0

Ì 3D FFT strategy

• 3D FFT is done by subdividing into 2D/1D FFTs

1D – FFT

along
z-direction

1D – FFT
along

y-direction

1D – FFT

along
x-direction

3D – FFT

(a) (b)

(c)(d)

Í Optimization strategies

• 1D FFT already highly optimized
→ we use the freely available FFTW3 library

• Instead, the focus lies on the organization of data
→ reordering/communication between 1D FFTs
→many 3D FFTs at the same time

• Improve the scaling to multiple nodes for all problem sizes
→ less MPI tasks; more OMP threads
→ able to choose dynamically depending on the problem

• Reduce communication bottlenecks
→ improve load balancing among all processors

Î Parallelization strategies

•Data within a sphere in G space is divided in sticks, sorted
and distributed among the MPI tasks:

reorder

distribute

• Efficient load balancing is achieved through the even
splitting of G vectors and sticks across MPI tasks

• Utilizing the 1D+1D+1D approach, the FFT proceeds as
follows:

(a) (b)

1D – FFT

along
z-direction

communicate
planes among

processors

reorder data
in y-direction

1D – FFT

along
y-direction

(d) (c)

reorder data
in x-direction

1D – FFT

along
x-direction

(e) (f)

•Due to the change in shape from a sphere to a cube, the
parallelization strategy changes from sticks to planes during
the FFT procedure

Ï Why the need for further optimization?

XHighly optimized libraries already available (libFFTX)
XParallelization works across multiple cores and nodes

7 Parallelized with current processor/node structure in mind

Memory

Memory Interface

L3

L2

L1

P

L2

L1

P

L2

L1

P

L2

L1

P

L2

L1

P

L2

L1

P

L2

L1

P

L2

L1

P

L2

L1

P

L2

L1

P

Memory

Memory Interface

L3

L2

L1

P

L2

L1

P

L2

L1

P

L2

L1

P

L2

L1

P

L2

L1

P

L2

L1

P

L2

L1

P

L2

L1

P

L2

L1

P

Network Interface

Communication Network

Communication Network

M

NI

P
C

M

NI

P
C

M

NI

P
C

M

NI

P
C

M

NI

P
C

Then:

Now:

⇒ Increase of complexity in HPC architectures results in
new challenges for efficient FFT parallelization

Ð R space to G space algorithm

Algorithm of the decomposition of 3D FFT in 1D+1D+1D FFTs

(1) Reorder G vectors for FFT along z direction

(2) Perform 1D FFT along z direction

(3) Prepare data for communication across nodes

(4) Communication

(5) Reorder received data along y direction

(6) Perform 1D FFT along y direction

(7) Reorder data along x direction

(8) Perform 1D FFT along x direction

Ñ Implemented optimization and results

Single node optimizations

• Include OMP directives (e.g. vectorization)

• Remove unnecessary zeroing and allocations

• Refactor loop structures to be write-consecutive

• Introduce MPI shared memory

 0.5

 1

 1.5

 2

 2.5

 1 2 4 10 20

FFT grid size = 96
Number of states = 500
Intel Broadwell 2.2 GHzT

im
e

 [
s
]

n MPI tasks and 20/n OpenMP threads

Optimized + MPI-shared memory
Optimized + MPI

Original FFTXlib version

Multi node optimizations

• Switch from ALL2ALL to Send/Receive

•Communicate batches of multiple states

•Overlap calculation and communication

 0.1

 1

 1 2 4 8 16

T
im

e
 [

s
]

Number of nodes

Optimized + MPI-shared memory
Original libFFTX version

•We are currently implementing this optimized version of the
libFFTX into our already optimized CPMD code4,5

•Current results indicate a substantial increase in
performance in e.g. the calculation of v(r)Ψn(r) for most
core counts; in some cases of more than 100%

Ò References

[1] D. Marx and J. Hutter (Cambridge University Press, Cambridge,
2009).

[2] M. C. Payne et al., Rev. Mod. Phys. 64, 1045–1097 (1992).
[3] R. M. Martin (Cambridge University Press, Cambridge, 2004).
[4] http://www.cpmd.org, Copyright 2000-2021 jointly by IBM

Corp. and by Max Planck Institute, Stuttgart. (2021).
[5] T. Klöffel, G. Mathias, and B. Meyer, Comput. Phys. Commun.

260, 107745 (2021).

