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O Fast-Fourier Transforms within plane-wave codes ® Parallelization strategies O R space to G space algorithm

e Data within a sphere in G space is divided in sticks, sorted

e Many Kohn-Sham density functional theory based ab initio and distributed among the MPI tasks:

molecular dynamics (MD) codes use a Plane-Wave (PW)
Basis Set! 3

— satisfy the periodic boundary conditions efficiently

Algorithm of the decomposition of 3D FFT in 1D+ 1D+1D FFTs

(1) Reorder G vectors for FFT along z direction

(2) Perform 1D FFT along z direction

Wavefunctions are represented in reciprocal space as a Proc | ' reorder .
°! J Sy P P P _ 'l| (3) Prepare data for communication across nodes
linear combination of PWs roc dlstnbute Il“ ||

(4) Communication

(5) Reorder received data along y direction
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e PWs allow for quick and easy transition from real (R) space Proc | e——— ———————————————
to reciprocal (G) space and vice versa P e e e st Mot f e e e

(6) Perform 1D FFT along y direction

(/) Reorder data along x direction
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e Essential in e.g. the application of the kinetic and potential (8) Perform 1D FFT along x direction

energy operators e Efficient load balancing is achieved through the even
— reduces the overall scaling costs from N- to NlogN splitting of G vectors and sticks across MPI tasks

 Modern MD simulation codes can spend up to 90% of the e Utllizing the 1D+ 1D+ 1D approach, the FFT proceeds as
runfime doing Fast-Fourier Transformations (FFTs) follows:

— highly efficient FFT roufines required (a) (b)

O Implemented optimization and results

Single node opfimizations
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e Include OMP directives (e.g. vectorization)
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In practice the sum is z-direction
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® 3D FFT strategy n MPI tasks and 20/n OpenMP threads
e 3D FFT is done by subdividing into 2D/1D FFTs Proc | O—fFT  Proc | Multi node optimizations
Proc 2 along Proc 2 e Switch from ALL2ALL to Send/Receive
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SRR e Communicate batches of mulfiple states
e Overlap calculation and communication
1D — FFT
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® Why the need for further optimization?

alon , : .
y_direcﬁon lelization works across multiple cores and nodes
lelized with current processor/node sfructure in mind
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[ [ [ e We are currently implementing this optimized version of the
icati iIbFFTX into our already optimized CPMD code?”
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l 1D — FFT ighly optimized libraries already available (lioFFTX)

e Current results indicate a substantial increase in
performance in e.g. the calculation of v(r)V,,(r) for most
O Optimization strategies core counts; in some cases of more than 100%

e 1D FFT already highly optimized : , : ,
— we use the freely available FFTW3 library AR nEnannnn EanEnannnn © References
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— improve load balancing among all processors



